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Abstract

Having an accurate estimate of total SARS-CoV-2 infections is critical for

informing public health decisions, distributing vaccines, and ultimately optimiz-

ing social and economic well-being of the country. However, the large number

of undetected infections due to testing shortages or infected individuals not

seeking a test, makes it challenging to estimate the total number of cases. We

specify and estimate a time-varying Markov model of COVID-19 cases. Accord-

ing to our estimation, 22.8% of the US population has been infected as of Nov

29, 2020, which is more than five times the number of officially confirmed and

reported cases. The estimated level of undetected infections spiked in March

and started to decline beginning in late April though it was not until July that

it was exceeded by the detected cases. Our results suggest that the substantial

increase in testing capacity in the US has identified a higher percentage of infec-

tions. Our model provides estimates of undetected infections that are plausible

and consistent with other published estimates, while having the advantage of

simplicity and ease of estimation with widely available data.



1 Introduction

Accurate estimates of total coronavirus disease 2019 (COVID-19) cases can help plan-

ners make decisions about testing policy and economic openness, let business lead-

ers better understand risks to their workers and customers, and inform economic

projections. However, one of the challenges facing policymakers, business leaders,

and the general public in understanding the spread of the severe acute respiratory

syndrome-coronavirus 2 (SARS-CoV-2) is the fact that many infected cases go un-

detected because of testing shortages or infected individuals not seeking a test, for

example, asymptomatic individuals may not even consider the need for a test Wu

et al. (2020). As vaccines become increasingly available, accurate estimates of past

and current undetected COVID-19 cases become more important as it leads to better

estimates of cumulative total infections, which is critical for distributing vaccines.

Specifically, in the context of a vaccination program, those already effected may al-

ready have immunity (if only temporarily) and so-called “herd immunity” could be

achieved more quickly by deferring vaccination of those already infected Randolph

and Barreiro (2020). Unfortunately, the number of undetected cases, while hard to

estimate, is much larger than the confirmed cases due to the vast amount of asymp-

tomatic patients, which significantly undermines estimations of the total number of

cases. As shown in a previous study Friedman et al. (2020), most models predict the

total number to be at least two to three times larger than the confirmed cases.

In fact, at the early stage of the pandemic, the number of positive tests in the US

grew steadily faster than the number of hospitalizations. Likewise, hospitalizations

have grown more quickly than deaths attributed to COVID-19. A very simple way

to understand the disconnect between deaths and reported new cases is to estimate

the total number of cases nationwide using lagged data on the number of deaths and
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Figure 1: New Cases in the US (per 100,000, 7-day moving average).
The red line in the figure shows the death implied new cases. The shaded red area shows the
estimated confidence band. The navy line in the figure shows the reported new cases.

the recent estimated infection fatality rates. Figure 1 shows the “death implied” new

cases, which are calculated using the 7-day average of new reported deaths in the

US lagged by 14 days (to reflect the average time between contracting COVID-19

and death) divided by the infection fatality rate of 0.68% estimated by Meyerowitz-

Katz and Merone (2020). The confidence band of the “death-implied” new cases

is calculated using the 7-day average of new reported deaths in the US lagged by

14 days divided by the 95% confidence interval of the estimated infection fatality

rate. The “death-implied” estimates suggest that the number of new cases in the

US rose rapidly in March, then levelled off and started to decrease in April. This

pattern is obviously at odds with the number of new positive tests which was quite

low comparing to the “death-implied” estimates until late June.

To estimate the gap between observed and total cases, we use a variant of a stan-

dard time-varying Markov model to infer the number of undetected cases using easily

observable data on reported cases, hospitalizations and deaths at the state and na-
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tional level. We examine a standard 5-state time-varying Markov model based on

the work by Gouriéroux and Jasiak (2020) (and cites therein) and extend the model

by introducing two conditioning variables, testing positivity rate and the intensity of

testing (i.e., tests conducted per 100,000 population). In our model the population

is either susceptible (S), infected and undetected (IU), infected and detected (ID),

hospitalized (H), or deceased (D). States are mutually exclusive so we track hospital-

ized separately from infected and detected. Recovered cases re-enter the susceptible

pool to avoid having another unobservable recovered state but will have little impact

on estimation for low levels of overall infection.

The model is estimated on the COVID-19 propagation data of the US and nine

individual states over the period of 271 days between March 4 to November 29, 2020.

We examine two versions of the model with different assumptions on transition prob-

ability to state H and obtain similar results from both. The model provides estimates

of undetected infections and total infections and fits observed levels of positive cases,

hospitalizations and deaths well.1 We find that the conditioning variables are im-

portant factors in the estimate with intuitive relations to infection probabilities. Of

course, other models have been proposed for estimating the number of undetected

infections and we compare our results to some of these works. Our estimates of un-

detected infections and total infections are consistent with other published estimates

Friedman et al. (2020) while in comparison, our model has the advantage of simplicity

and ease of estimation.2

1Our estimates are consistent with the pattern of “death-implied” new cases shown in Figure 1.
2The Friedman et al. (2020) are available at https://ourworldindata.org/covid-models.
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2 Model specification

The latent individual history variable Yi,t, for individual i = 1, ..., N at time t = 1,

. . . , T, is qualitative polytomous with J alternative states denoted by j = 1, . . . ,

J. As in the work by Gouriéroux and Jasiak (2020), we assume that Yi,t have the

same marginal distribution across all individuals i = 1, ..., N at t fixed, which can be

summarized by the J-dimensional vector p(t). The j-th component of the marginal

distribution is pj(t) = P (Yi,t = j). In addition, the individual history variable follows

a Markov process with time-varying transition matrix P [p(t− 1); θ], which gives

p(t) = P [p(t− 1); θ]′p(t− 1), t = 2, ..., T, (1)

with θ being a vector of parameters. The data pertaining to the individual history

variable Yi,t may not be available in practice, and only aggregate frequencies for some

of the states are available. With the assumptions of independent individual histories

and homogeneous population of risks, the J-dimensional cross-sectional frequency

vector f(t), where fj(t) is the state j frequency of the population, can be seen as the

sample counterpart of p(t).

However, the cross-sectional frequencies are only partially observed. A state ag-

gregation matrix A is used to account for the unobserved states and the observations

are Ât = Af(t) for t = 1, ..., T , where A is a K × J matrix of full rank K. The

parameters of interest, θ and the sequence of the unobserved component of p(t), can

then be estimated by solving the following optimization problem (where ‖.‖2 is the
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Euclidean norm):

(p̂(1), ..., p̂(T ), θ̂) = argmin
T∑
t=2

‖p(t)− P [p(t− 1), θ]′ p(t− 1)‖22 (2)

s.t. Ap(t) = Af(t) = Ât, t = 1, ..., T.

To model the COVID-19 propagation, we consider a Markov process with 5 states:

1 = S, for susceptible, 2 = IU , for Infected and Undetected, 3 = ID, for Infected and

Detected, 4 = H for Hospitalized, and 5 = D for Deceased (due to COVID-19). The

sum of the frequencies across all the five states at any given time t equals to the size

of the initial population. For simplicity, we assume no immunity in our estimation,

hence the recovered cases re-enter the susceptible pool. This assumption lets us avoid

having an unobservable recovered state but will have little impact on estimation for

low levels of overall infection. The transition matrix P [p(t − 1); θ] of the Markov

process is defined as

S IU ID H D



S 1− pi,t pi,t(1− pd,t) pi,tpd,t 0 0

IU p21 (1− p21 − p24)(1− pd,t) (1− p21 − p24)pd,t p24 0

ID p31 0 1− p31 − p34 p34 0

H p41 0 0 1− p41 − p45 p45

D 0 0 0 0 1

with pi,t = logist (a1 + a2 (p2(t− 1) + p3(t− 1)))+a3xt), pd,t =logist (b1 + b2yt) , where

logist(x) = 1/[1+exp(−x)] is the logistic function, i.e. the inverse of the logit function.

The probability of infected pi,t follows a multinomial logit model for the competing

propagation driven by lagged IU and lagged ID, and it also depends on the testing

positivity rate xt. Conditioning on being infected, the probability of being detected

pd,t is a function of testing intensity yt. Each row of the transition matrix sums to one

by construction. The structure of zeros indicates that one cannot go backward from

ID to IU , patients who died are hospitalized before death, the hospitalized patients
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will stay in hospital until they recover or die, and death is considered an absorbing

state.

In addition, we consider two model specifications for the transition probabili-

ties from state IU and ID to state H. The basic specification assumes constant

transition probabilities p24 and p34. In this model, there are 11 parameters in θ =

[a1, a2, a3, b1, b2, p21, p24, p31, p34, p41, p45]
′ . The full specification assumes time-varying

transition probabilities driven by the lagged frequency of the corresponding state with

p24 = logist (c1 + c2p2(t− 1)) , p34 = logist (d1 + d2p3(t− 1)) , and in which θ has 13

parameters.3 The results from these two versions of the model are very similar so

we only report the results from the basic model (but results from the full model are

available on request).

Empirically, IU(t) and ID(t) represent the state of currently infected excluding

those hospitalized. The frequency of ID(t) is observable by assumption, while IU(t)

is the unobserved state of unidentified infections and will be considered as additional

quantities of interest to be estimated jointly. Also, the frequencies of H(t) and D(t)

are both observable. Therefore, we have the state aggregation matrix A expressed as

A =


0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 .

2.1 Data

The historical data of COVID-19 propagation for the US and each state is from The

Covid Tracking Project, see https://covidtracking.com/data. The frequency of

3They are [a1, a2, a3, b1, b2, c1, c2, d1, d2, p21, p31, p41, p45]
′
.
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ID(t) is measured by the rolling 2-week sum of the new positive tests in the US,

which assumes that a person with positive test will either be hospitalized or recover

within 14 days. The frequency of H(t) is the actual number of hospitalized in US

on any given date and the frequency of the absorbing state D(t) is measured by

the cumulative deaths caused by COVID-19 in the US. In constructing the cross-

sectional frequency vector f(t), we express the frequency of each state in per 100, 000

population to facilitate interpretation as well as comparison to estimated infection

rates across geographies. For the two conditioning variables, the testing positivity

rate xt is measured by the weekly moving average of the testing positivity rate (i.e.,

out of all tests) and the test intensity yt is measured by the rolling 7-day average of

tests per day per 100, 000 population as of date t. Online Appendix Figure A.1 show

the daily evolution of ID(t), H(t) and D(t) for the US and Online Appendix Figures

A.3 - A.5 show the same data for the nine states.

2.2 Estimation of model parameters

The initial frequency is set equal to 100, 000 for state S(0) and 0 for all other states.

The model parameters θ and the series of frequencies of the unobserved state IU(t)

are then estimated by solving the optimization problem in Equation (1) numerically

using the fminsearch function in Matlab. The mean fitted values (%RMSE) are

within 2.36% of observed values for the US and the %RMSE for the individual states

are shown in Online Appendix Table A.1. The comparisons of fitted and observed

frequencies for state ID, state H and state D of the US are shown in Online Appendix

Figure A.2. We note that the estimated frequencies track the observations closely.
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2.3 Estimation of cumulative total cases

We estimate the cumulative total cases based on the data of detected cases and our

estimated undetected cases. The cumulative total cases CI(T ) up to date T is CI(T )

= CD(T ) + CU(T ), where CD(T ) is the cumulative detected cases and CU(T ) is

the cumulative undetected cases. We use the cumulative number of positive tests

provided in the data set as the measure of cumulative detected cases. Using our

estimated model, the cumulative undetected cases is computed as

CU(T ) =
T∑
t=1

pi,t(1− pd,t)S(t− 1)−
T∑
t=1

(1− p21 − p24)pd,tIU(t− 1).

The first summation in the above equation is the cumulative number of daily new

entrants to state IU , which measures the total number of patients who have been

through the infected and undetected state. According to our model specification,

a proportion of patients in state IU transit to state ID at each t as they became

“detected”. These patients were included in the cumulative number of detected cases,

therefore, we subtract this portion of patients from the total number of patients who

was in state IU to get the cumulative number of undetected cases.

3 Results

We estimate the time-varying Markov model on COVID-19 propagation data of the

US and nine individual states, Arizona, California, Florida, Georgia, North Carolina,

New Jersey, New York, Pennsylvania and Texas, of which the total residential popu-

lation account for nearly half of the US population. We examine two versions of the

model, a basic model with static transition probabilities to state H and a full model

with time-varying transition probabilities driven by lagged frequency of the corre-

8



Panel (a) Parameter Estimates of the US

a1 a2 a3 b1 b2
−8.4486 −0.0030 25.7573 −5.0047 0.0120

1 = S 2 = IU 3 = ID 4 = H 5 = D
2 = IU 0.2979 Time-varying Time-varying 0.0013 0
3 = ID 0.0461 0 0.9482 0.0057 0
4 = H 0.0805 0 0 0.8970 0.0225
5 = D 0 0 0 0 1

Panel (b) Average Parameters of Individual States

a1 a2 a3 b1 b2
−8.134 −0.004 31.353 −4.531 0.012

1 = S 2 = IU 3 = ID 4 = H 5 = D
2 = IU 0.403 Time-varying Time-varying 0.002 0
3 = ID 0.077 0 0.917 0.006 0
4 = H 0.077 0 0 0.8970 0.026
5 = D 0 0 0 0 1

Table 1: Parameter Estimates of the Basic Model

sponding state. The key results (e.g., estimates of infected and undetected cases) are

very similar, so we only report the results from the basic model and the results from

the other specification are available on request. The parameter estimates for the US

are reported in Table 1a and the average of state parameters are in Table 1b. The

model parameters for individual states are given in Online Appendix Table A.1.

3.1 Estimates of infected and undetected cases

The time series of the frequencies of state IU(t) are the quantities of primary inter-

est. Figure 2a shows the estimated frequencies of the state IU (blue bars) and the

observed frequencies of the state ID (dashed green line) for the US. We find that the

estimated undetected cases grew rapidly since mid-March until peaking in early-April.

After that, estimated undetected cases has declined substantially but it was not un-
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til the beginning of July that the number of detected cases exceeded the number of

undetected cases.
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Figure 2: The Estimated Frequencies of State IU and Total Infections.
The figure shows the estimated frequencies of state IU and total infections. The dashed green line
is the observed frequencies of state ID and the blue bars are the estimated frequencies of state IU.
The dashed orange is the estimated frequencies of total cases (e.g. total frequencies of state IU and
state ID). The solid navy line with corresponding values on the right y-axis shows the evolution of
unidentified percentage of the total cases.
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We calculate the total infections per 100,000 population at time t (dashed orange

line) by the summation of ID(t) and IU(t). We observe that the total number of

infections are driven by the undetected cases before June, while the confirmed cases

dominate the trend in total infections thereafter.4 The evolution of the unidentified

percentage of the total cases are shown by the navy line of Figure 2a with correspond-

ing values on the right y-axis and we observe that this percentage is trending down

over time.

We estimate undetected cases and total infections for each individual state. The

results are shown in Online Appendix Figures A.6a - A.14a. Based on our estimation,

all states in our model experienced a rapid increase in the total infections during April,

while five out of nine states in our data only show a mild spread of SARS-CoV-19

according to the confirmed cases. We will discuss later that this is in fact a result of

insufficient testing. Around three weeks after most states issued Stay-at-Home orders,

our estimation suggests that both the undetected cases and the total infections peaked

around the middle of April and started to decline in all nine states. As each state

began to lift restrictions around early June, the estimated total infections started to

climb again except for New York and New Jersey. In contrast to the early outbreaks

when the majority of total infections were undetected cases, the total infections during

this period were driven by the detected cases in all states. In the most recent surge

beginning at late October, the percentage of undetected cases, although varies across

states, were below 20% for all states, suggesting that detected cases are becoming

representative enough for total cases.

4This result is also consistent with the converging pattern between the “death-implied” new cases
and the reported new cases shown in Figure 1.
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3.2 Estimates of cumulative cases

We compute the cumulative total cases based on the data of detected cases and our

estimated undetected cases. The estimated cumulative infections for the US and

individual states as of November 29, 2020 are shown in Figure 3 and Table 2. Based

on our estimation, the number of cumulative cases in the US is 74, 667, 047, which

is more than 5 times the reported confirmed cases and accounts for 22.75% of the

US population. Our estimated percentage of undetected infections out of cumulative

total infections is 82.34% for the US comparing to the estimates of 79.21% and 74.23%

in the works by Gu (2020) and Friedman et al. (2020) respectively. For individual

states, both the percentage of population infected and the percentage of undetected

cases out of total infections vary a lot across states. New York and New Jersey,

which are the early epicenters of the Covid-19 pandemic, have 56.84% and 39.81%

of population being infected respectively. In contrast, Georgia and North Carolina

have 21.79% and 20.10% of population being infected respectively. New York and

New Jersey also have the highest percentage of undetected infections (94.20% and

90.55% respectively), while Georgia and North Carolina have the lowest percentage

of undetected infections (81.82% and 82.86%). This result is consistent with the fact

that New York and New Jersey experienced worse early outbreaks than other states

during which the test capacity was limited.

3.3 Conditioning variables

As conditioning variables in our analysis we include both the testing positivity rate

and the intensity of testing. A high testing positivity rate is a sign of higher virus

transmission accompanied with insufficient testing, which points to higher level of

total infections even with a relatively low number of detected cases. The intensity

12



Panel (a) Number of Infections

State Confirmed Undetected Total % Undetected Infections

AZ 325, 995 1, 606, 040 1, 932, 035 83.13%
CA 1, 198, 934 7, 674, 817 8, 873, 751 86.49%
FL 976, 944 5, 534, 536 6, 511, 480 84.99%
GA 420, 601 1, 893, 227 2, 313, 828 81.82%
NC 361, 778 1, 748, 355 2, 110, 133 82.86%
NJ 334, 114 3, 200, 884 3, 534, 998 90.55%
NY 641, 161 10, 414, 697 11, 055, 858 94.20%
PA 357, 196 2, 747, 136 3, 104, 332 88.49%
TX 1, 157, 273 7, 018, 290 8, 175, 563 85.84%

State Sum 5, 773, 996 41, 837, 985 47, 611, 981 87.87%
US 13, 188, 777 61, 488, 270 74, 677, 047 82.34%

Panel (b) Infections per 100,000 Population

State Confirmed Undetected Total Population

AZ 4, 477 22, 061 26, 538 7, 280, 000
CA 3, 034 19, 425 22, 459 39, 510, 000
FL 4, 548 25, 766 30, 314 21, 480, 000
GA 3, 960 17, 827 21, 787 10, 620, 000
NC 3, 445 16, 651 20, 096 10, 500, 000
NJ 3, 762 36, 046 39, 808 8, 880, 000
NY 3, 296 53, 546 56, 842 19, 450, 000
PA 2, 790 21, 462 24, 252 12, 800, 000
TX 3, 990 24, 201 28, 191 29, 000, 000

State Sum 3, 619 26, 227 29, 847 159, 520, 000
US 4, 018 18, 735 22, 753 328, 200, 000

Table 2: Estimated Cumulative Infections as of Nov 29, 2020 (state parameters)
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Figure 3: The estimated cumulative infections (per 100,000 population) for
the US and individual states as of November 29, 2020.
The figure shows the estimated cumulative infections (per 100,000 population) for the US and nine
individual states (SA represents the aggregate of the nine states) as of November 29, 2020. The red
bar shows the proportion of detected infections and the blue bar shows the proportion of undetected
infections.
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Figure 4: The Conditioning Variables (xt and yt).
The top panel shows the time series data of the test positivity rates xt, which is measured by the
weekly moving average of the rates of positivity in testing (i.e., out of all tests). The bottom panel
shows the time series data of test intensity yt, which is measured by the rolling 7-day average of
tests per day per 100, 000 population as of date t.

of testing measures tests conducted daily per 100, 000 population. As testing plays a

key role in identifying infected individuals, we believe that the intensity of testing is

an important factor in determining the proportion of total infections being detected.

The two conditioning variables for the US and individual states are shown in Figure

4.

In the transition matrix of the Markov process, we model the time-varying prob-

ability of a susceptible individual being infected in the next period as a function of

testing positivity rate and the probability of being detected conditioning on being
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infected as a function of testing intensity. Our estimates of the coefficient of testing

positivity are 25.75 for the US and ranging from 15.30 to 39.45 for the nine individual

states with an average of 31.35. The positive coefficients imply that a higher testing

positivity rate is associated with a higher probability of a susceptible individual being

infected holding other factors constant. We get positive estimates of coefficients for

intensity of testing, which is 0.012 for the US and ranging from 0.006 to 0.018 for

the nine individual states with an average equal to the US coefficient. The positive

estimates is in line with our intuition that the detection rate is increasing with the

intensity of testing. From Figure 2a, our results suggest that the substantial increase

in testing capacity over time has been successful in identifying a much higher percent-

age of infections in the US. Cross-sectionally, we observe in Figure 5 that states with

high testing positivity rate experience worse outbreaks with higher total infections.

From the three snapshots, we find that the testing intensity is increasing in all states

over time, so does the percentage of detected cases. In most of the cases, states with

higher testing intensity have higher detection rate.

4 Discussion

We estimate a time-varying Markov model to infer the number of undetected cases

and total infections from easily observable data on reported cases, hospitalizations

and deaths at the state and national level. The results are intuitive and in line with

other published estimates. Our model is capable of providing timely estimates of

cumulative total cases as well as the evolution of total infections over time, which is

a critical for assessing the burden of COVID-19 on healthcare system and informing

public health decisions. Nonetheless, our model is fairly simple and can be applied

easily to other regions.
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Figure 5: Snapshots of total infections, detected rate and two conditioning
variables.
The figure shows three snapshots of our estimated total infections, detected rate with two condi-
tioning variables on April 5 (left panel), August 1 (middle panel), and November 29 (right panel).
The three dates are taken to reflect three peaks in COVID-19 cases. The blue bars show the total
infections per 100, 000 population and the yellow line shows the percentage of detected cases out of
total infections. The teal line shows the testing positivity rate and the blue line shows the testing
intensity on the selected date. All percentage values (detected percentage and testing positivity
rate) are corresponds to the right y-axis.
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Our estimates indicate a high percentage of undetected cases early in our sample

period followed by a decline to a much lower percentage of undetected cases by July,

which is consistent with the converging trend between “death implied” new cases and

reported new cases5. The substantial increase in testing capacity has been successful

in identifying a much higher percentage of infections. Taken at face value, our results

show that reported confirmed cases in the US increasingly reflect the true number of

infections. The bad news from these results is that the recent surge in positive tests

since October is in fact an increase in new cases as opposed to an increase related to

higher number of tests.

The evolution of estimated total infections also demonstrates the effectiveness of

the non-pharmaceutical interventions. Most states in the US issued Stay-at-Home

orders in late March. After three weeks, we see a significant decrease of total infec-

tions in the US and all individual states, which suggests the strong impact of the

interventions on containing the spread of SARS-CoV-19. This result is consistent

with previous studies Korevaar et al. (2020); Unwin et al. (2020). However, the ef-

fectiveness of the interventions is not necessarily reflected by the reported confirmed

cases as we still observe steady increase in detected cases in AZ, CA, NC and TX.

Estimation of the cumulative total infections may provide better information on

population immunity and thus enable planners to better distribute vaccines, make

more informed public health decisions, and ultimately optimize social and economic

well-being of the country. The number of cumulative infections may suggest what

percentage of the population is immune to the virus because of previous infection and

a very low reinfection rate, or likewise how many people need to get a vaccine before

we reach herd immunity. According to our estimation, by the end of November, about

23% of the US population has been infected by SARS-CoV-2, which suggests that

5See Figure 1 for details
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we are still a long way from herd immunity. Yet, if vaccinations could be prioritized

based on past infections, our estimated total infections represents a substantial base

of the population which may already be immune.

The model parameters are easy to estimate and have intuitive explanations. In

Table 1, p21 = 0.2979, which corresponds to a less than 1 week average recovery

time of for state IU , and p31 = 0.0461, which represents an average recovery time

around 20 days for state ID. The model estimates that it takes longer for a patient

in the detected state to recover, which is reasonable considering it is more likely that

patients with severe cases will get tested (and be detected) thus the overall health

condition of state ID is worse than state IU. This finding is also consistent with

the estimated transition probabilities to state H. The probability of transition to

state H is 0.0057 from state ID, which is higher than the probability of 0.0013 from

state IU. The estimate of p33 is 0.9482, which means that people stay in the state

ID for an average around 18 days and are then either hospitalized or recover. This

estimate is roughly consistent with how we construct the variable representing state

ID (i.e. rolling 2-week sum of the positive tests). The mortality rate conditional

on being hospitalized is 2.25%, which is higher than the estimated value of 0.68%

for the overall infection-fatality rate of COVID-19 in the work by Meyerowitz-Katz

and Merone (2020). This result is not surprising considering that the severity of the

illness is higher for the hospitalized patients than the average severity of all cases.

We estimate the model using data of the US and nine individual states. The

states in our sample constitute a good representation of the overall demographic not

only because their population account for nearly half of the US population, but also

since they have experienced the pandemic in very different ways since March in terms

of the trends of detected cases, hospitalizations, and deaths. Despite the similar

recent surge in detected cases and hospitalizations, these data peaked in late-April
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for New York, New Jersey and Pennsylvania, while other states have their peaks in

mid-July. We estimate the undetected cases and total infections in the US using the

average state parameters. The estimates of cumulative total infections are given in

Online Appendix Table A.2, which is similar to the estimates using the US parameters

shown in Table 2. Figure 2b shows the estimated frequencies of the state IU and total

infections using the average state parameters. We observe that the estimates follow

similar trend as the results in Figure 2a using the US parameters.

One concern about our analysis is that we are not able to condition on the age

of those with detected cases or who are hospitalized due to data limitation. There

are published studies (see O’Driscoll et al. (2020)) that show the estimated infection

fatality rate increasing progressively with age. Given anecdotal evidence that age of

detected cases is changing through time, the estimation is likely to benefit by condi-

tioning estimates on other variables such as the average age of hospitalized patients or

the average age of those testing positive. Our estimates could also underestimate total

infections if the quality of care has improved over time and reduced hospitalization

and death rates in a way the model does not capture.
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